In this study, we are going to discuss the Inverse Trigonometric Functions

Note that graph of

 $y = \sin x$

Fails the horizontal line test, therefore we are not able to write a function that is inverse of $f(x) = \sin x$

However, if we take

 $f(x) = \sin x$ with $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$

We have a graph of an invertible function and we have

 $\mathbf{f}^{-1}(x) = \sin^{-1}\mathbf{x}$ $-1 \leq x \leq 1$ The domain of $f^{-1}(x) = \sin^{-1}x$ is [-1,1] and the range is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$\sin \theta = \frac{1}{2} \Longrightarrow \theta = \sin^{-1} \left(\frac{1}{2} \right) = \frac{\pi}{6}$$
$$\sin \theta = -\frac{1}{2} \Longrightarrow \theta = \sin^{-1} \left(-\frac{1}{2} \right) = -\frac{\pi}{6}$$

Like wise, if we took

 $f(x) = \cos x$ with $0 \le x \le \pi$ we can have $f^{-1}(x) = \cos^{-1}x$ with $-1 \le x \le 1$ as a function as shown below

Similary, for $f(x) = \tan x$ with $-\frac{\pi}{2} < x < \frac{\pi}{2}$

$$f(x) = \tan x \qquad f^{-1}(x) = \tan^{-1}(x) \qquad y = -\frac{\pi}{2} \qquad y = \frac{\pi}{2}$$

Note that for the function given by $y = \tan^{-1}x$

The domain is $(-\infty,\infty)$ and the range is $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

Note that

$$\tan^{-1}x \to \frac{\pi}{2} \qquad \text{as } x \to \infty$$
$$\tan^{-1}x \to -\frac{\pi}{2} \qquad \text{as } x \to -\infty$$

Worked out exercises from the Text

Page 521

12. To find $\sin^{-1}\left(\sin\left(\frac{2\pi}{3}\right)\right)$ Caution: Note that according the definition above, we can not take $\sin^{-1}\left(\sin\left(\frac{2\pi}{3}\right)\right) = \frac{2\pi}{3}$ because $\frac{2\pi}{3}$ is not in the range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ of inverse sine.

When evaluating a quantity of type $\sin^{-1}\left(\sin\left(\frac{2\pi}{3}\right)\right)$, it is always a good idea to first evaluate $\sin\left(\frac{2\pi}{3}\right) = \frac{1}{2}\sqrt{3}$ and then look at $\sin^{-1}\left(\sin\left(\frac{2\pi}{3}\right)\right) = \sin^{-1}\left(\frac{1}{2}\sqrt{3}\right) = \frac{\pi}{3}$ in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

When using your TI83 or TI84

sin⁻¹(sin(2π/3) 1.047197551

OR in the degree mode

Keep the special triangles in mind

I am going to post more worked out exercises tomorrow