
We are going to work on the method of Lagrange Multiplier to find the maximum or

minimum value of a function subject to a constraint.

Example:

We would like to construct a rectangle of largest possible area that can be

inscribed in the ellipse x2

9  y2

16  1
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we would like to obtain the dimensions x and y such that the area of the inscribed
rectangle (like the green rectangle shown below) is maximum.



The green area is 4xy

In other words, we would like to maximize the function fx,y  4xy subject to the

constraint x2

9  y2

16  1

A graph of the function (of two variables) is shown below.



We would like the find the heighest z-value on the graph of fx,y

when looking directly above from the graph of the ellipse
x2

9  y2

16  1 (shown in black color)



Let us consider the problems in terms of the level curves of the function fx,y for

various constants and its relationship with the graph of x2

9  y2

16  1

The graphs of fx,y  c will be various hyperbolae, as shown below
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It will be good to restrict ourselves to the first quadarnt only, and note that
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In the above example, we can note that the maximum value of fx,y  4xy subject

to x2

9  y2

16  1

occurs when the two graphs touch each other, or in other words they share a
common tangent line and consequently the normal vectors to these two graphs are
parallel to each other.

Remember that the gradient vector gives us a direction along the normal to a level
curve, therefore we can use the gradient vector to find the values of x,y that will give
such a maximum value.



If we took, gx,y  x2

9  y2

16

∇g  2x
9 , 2y

16  2x
9 , y

8

we have

For fx,y  4xy

∇f  〈4y, 4x

At the point of our interest, ∇f and ∇g are parallel to each other.

therefore we should be able to find a scalar  such that

∇f  ∇g

i.e.

〈4y, 4x   2x
9 , y

8

4y  2x
9 → y  x

18
4x  y

8 → x  y
32

substituting y  x
18 in x  y

32

we get

x  
32

x
18



→ x  2

32  18 x

Note that x  0 is not a value that fits in our problem, therefore
we can cancel x to obtain

1  2

576

OR

2  576
   576  24

Therefore we have

y  24x
18  4

3 x

substitute this value in

x2

9  y2

16  1

to obtain

x2

9 
4
3 x

2

16  1

x2

9  x2

9  1

2x2  9
x2  9

2



x   3
2

y   4
3

3
2

 2 2

The corresponding points are 3
2
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x,y fx,y  4xy

3
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The maximum value of fx,y subject to the given constarint is 24.

You could easily have done the above problem using single variable calculus

...............................

Let us look at the extension of this method for higher dimensions

We would like to maximize or minimize a function fx,y, z subject to the contraint
gx,y, z  c



The method is based on the assumptions that both f,g have continuous partial
derivatives, the exteme values exist, and that ∇g ≠ 0

on the surface gx,y, z  c

The method based on the Lagrange’s Theorem (Theorem 13.19 in the text book)

The method works as follows:

First find the values of x,y, z and  such that

∇f  ∇g
and gx,y, z  c

then evaluate the values of the function at the points obtained in the first step.
Comapre the values that you obtain to find the maximum and the minimum.

Example:

We are given a cardboard with an area of 12 square feet and would like to
construct a box with open top with maximum possible volume.

y
x

z

area of the base is xy
areas of the sides are xz,yz,xz,yz

NO TOP

Total area is 2xy+2yz+xy that equals 
12 square feet

We have to maximize

fx,y, z  xyz



subject to

xy  2xz  2yz  12

take gx,y, z  xy  2xz  2yz

then

we have to maximize
fx,y, z  xyz

subject to gx,y, z  12
Find

∇f  〈yz, zx,xy
∇g  〈y  2z,x  2z, 2x  2y

set

∇f  ∇g
〈yz, zx,xy  〈y  2z,x  2z, 2x  2y

yz  y  2z ......... (1)
zx  x  2z ......... (2)
xy  2x  2y ......... (3)
and we also have

xy  2xz  2yz  12 .......(4)

Now we have to skillfully work with these equations

First note that  ≠ 0 because his will make



xy  yz  zx  0 and that will give the area of the available cardboard as 0

Observe that if we multiply the equation (1) by x
and the equation (2) by y, we shall get two identical terms to eliminate
yz  y  2z → xyz  xy  2xz

zx  x  2z → yzx  xy  2yz

Set
xy  2xz  xy  2yz

2xz  2yz
since  ≠ 0

xz  yz, z ≠ 0 beacuse that will give 0 as the volume

therefore
x  y

Now
zx  x  2z → yzx  xy  2yz

xy  2x  2y → xyz  2xz  2yz

we have

xy  2yz  2xz  2yz

OR
xy  2xz

since
 ≠ 0 and x ≠ 0
y  2z

subsitute



x  y
and
y  2z
in

xy  2xz  2yz  12

to obtain

2z2z  22zz  22zz  12

12z2  12 → z2  1

z  1 ft is applicable to our case
x  y  2 feet

maximum volume is 2  2  1  4 cubic feet

Example 2:

Let us work on #14 on the page 974

To maximize fx,y  e−xy/4 subject to x2  y2 ≤ 1

In this case we are looking at two regions

PARTA: inside the circle x2  y2  1

PARTB: the boundary of the circle x2  y2  1



For PARTA

We shall use the method that we used to obtain the extrema on an open set by
finding the critical points by setting the partial derivatives to 0

fx,y  e−xy/4

→
∂f
∂x  − y

4 e−xy/4

∂f
∂y  − x

4 e−xy/4

∂f
∂x  ∂f

∂y  0

at x,y  0,0 because e−xy/4 ≠ 0

PARTB:

∇f  − y
4 e−xy/4,− x

4 e−xy/4

Take gx,y  x2  y2

constraint is gx,y  1
∇g  〈2x, 2y

∇f  ∇g

→

− y
4 e−xy/4,− x

4 e−xy/4  〈2x, 2y

− y
4 e−xy/4  2x → e−xy/4  −8 x

y

− x
4 e−xy/4  2y → e−xy/4  −8 y

x

x
y  y

x
gives
x
y  y

x because  ≠ 0



x2  y2

y  x

substitute in

x2  y2  1
x2  x2  1
2x2  1
x2  1

2
x   1

2

We shall compare the values at
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POINT fx,y  e−xy/4
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0,0 e−00/4  1
You may apply the second derivative test to see that there is a saddle point at

0,0,1

e−xy/4



If we have two constarint functions g and h, we can introduce additional Lagrange
Multiplier 

solve

∇f  ∇g  ∇h

and continue

Example 3:

To find the maximum and minimum values of fx,y, z  −x  2y  2z

constrained on the ellipse x2  y2  2,y  2z  1



The problem is actually to

To find the maximum and minimum values of fx,y, z  −x  2y  2z

subject to two constrints
x2  y2  2,y  2z  1

Take gx,y  x2  y2

hx,y  y  2z

∇f  〈−1,2,2
∇g  〈2x, 2y, 0
∇h  〈0,1,2

〈−1,2,2  〈2x, 2y, 0  〈0,1,2

2x  −1
2y    2
2  2 →   1
x2  y2  2



y  2z  1

2y    2 → 2y  1  2 → 2y  1 → y  1
2

2x  −1 → x  − 1
2

substitute in x2  y2  2

to obtain
− 1

2
2
 1

2
2
 2

1
42  1

42  2
1

22  2

2  1
4

   1
2

for   1
2

x  − 1
2  −1

y  1
2  1

use these values in
y  2z  1 to obtain z  0

the point corresponding to   1
2 is −1,1,0

for   − 1
2

x  − 1
2  1

y  1
2  −1

use these values in
y  2z  1 to obtain z  1



the point corresponding to   1
2 is 1,−1,1

f−1,1,0  −−1  21  20  3 max

f1,−1,1  −1  2−1  21  − 1 min

Suggested Practice Problems in the section 13.10

5,11,13,21,33,35




