
Partial Derivatives:

Consider the function: fx,y  y2 − x2

We would like to see the rate of change of this function, when we keep one of the two independent variables as
a constant.

For example, in the above function, if we set y as a constant, the graph will be the curve formed by the
intersection of the two surfaces shown below
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To find the rate of change of this function along this particlar curve, we shall treat the y-value as that particular
constant and look at the rate of change in wrt x

that may be performed by differentiating fx,y wrt x treating y as a constant.

in case, the following limit is available:

LimΔx→0
fxΔx,y−fx,y

x

the notation for this limit is ∂f
∂x

Example 1: Find ∂f
∂x and ∂f

∂y if fx,y  x siny2
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When we compute ∂f
∂x , we treat y as a constant therefore siny2 as a constant

and ∂f
∂x  siny2

For ∂f
∂y , we treat x as a constant, therefore

∂f
∂y  x ∂

∂y siny2  x2ycosy2 , Note that we used the chain rule and also that ∂
∂y siny2

has the same value as d
dy siny2 does.

Example 2:

Find ∂f
∂x , ∂f∂y , ∂f∂z if it is given that fx,y, z  xy3z

For the computation of ∂f
∂x , note that y and z will be treated as constants therefore y3z

is a constant and we are differentiating x to a constant power.

Therefore the calculation is fairly simple,

∂f
∂x  y3zxy3z−1 Because, dxn

dx  nxn−1 , in this case the constant n  y3z

For the computation of ∂f
∂y , note that x and z will be treated as constants

Now, we have a different procedure, in the case of ∂f
∂x for fx,y, z  xy3z, we had a variable base and a constant

power. For ∂f
∂y with fx,y, z  xy3z we have a constant base and a variable power.
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Remember that dau

dt  aulna du
dt for a constant a  0

∂
∂y xy3z  xy3zlnx ∂∂y y

3z xy3zlnx3y2z 3y2z xy3z lnx

..................

Higher order partial derivatives follow the very much the same style that the derivatives of the functions of a
single variable do. But, we shall keep noticing the additional requirements as well as assumptions.

Example 3:

To find ∂2f
∂x2

for fx,y, z  sinx3yez

∂f
∂x  3x2yez cosx3yez used the Chain Rule for differentiation wrt x , treated yez as a constant

For

∂f
∂x

we shall differentiate

∂f
∂x  3x2yez cosx3yez with respect to x

we shall use the product rule combined with the chain rule and yez is treated as a contstant
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∂2f
∂x2

 32xyez cosx3yez3x2yez−3x2yez sinx3yez
 6xyez cosx3yez−9x4y2e2z sinx3yez

Example 4:

To evaluate ∂2f
∂x∂y for fx,y  xey

∂2f
∂x∂y 

∂
∂x

∂f
∂y  ∂

∂x xey ey

A partial derivative like ∂2f
∂x∂y is called a MIXED PARTIAL DERIVATIVE

In case both ∂2f
∂x∂y and ∂2f

∂y∂x are continous on an open disk D,

∂2f
∂x∂y  ∂2f

∂y∂x at each point in D.

Example 5:

#40 on the page 912

For the function z  cos2x − y
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To find the slopes of the surface in the x-direction and in the y-direction at the point 
4 , 

3 , 3
2

The slope in the x-driection at 
4 , 

3 , 3
2 is the slope of the tangent line to the curve that is formed by taking

the intersection of the surface z  cos2x − y with the plane y  
3
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The slope is obtained by evaluating ∂z
∂x at 

4 , 
3 , 3

2

For z  cos2x − y

∂z
∂x  −2 sin2x − y

at 
4 , 

3 , 3
2

∂z
∂x 

4 , 3 , 3
2

is a notation for the value of ∂z
∂x at 

4 , 
3 , 3

2

∂z
∂x 

4 , 3 , 3
2

 −2sin 2 
4 − 

3  −1
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The slope in the y-driection at 
4 , 

3 , 3
2 is the slope of the tangent line to the curve that is formed by taking

the intersection of the surface z  cos2x − y with the plane x  
4

z cos2x − y→ ∂z
∂y  −−1 sin2x − y

∂z
∂y 

4 , 3 , 3
2

 sin 2 
4 − 

3  1
2

Example 5:

#46 on the page 912

For the surface given by fx,y  3x3 − 12xy  y3
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to find the coordinates of all the points at which

∂f
∂x  0 and ∂f

∂y  0

∂f
∂x  9x2−12y

∂f
∂y  −12x  3y2

∂f
∂x  0 and ∂f

∂y  0

implies that
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9x2 − 12y  0 and −12x  3y2  0

9x2−12y  0 → 12y  9x2→ y  9x2

12

substitute y  3x2

4

in −12x  3y2  0

to obtain −12x  3 3x2

4
2
 0

which gives
−12x  27x4

16  0
→
−4x  9

16 x4 0
→
x 9

16 x3 − 4  0
→

x  0 or 9
16 x3 − 4  0 → 9x3  64 → x3  64

9 → x  4
91/3 → x  4

32/3

substitute these values in

9x2−12y  0

x  0 → y  0
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x  4
32/3 → 9 4

32/3

2
−12y  0 → 3 16

34/3 −4y  0 → 16
31/3 −4y  0 → y  4

31/3

The coordinates of the required points are 0,0 and 16
31/3 , 4

31/3

at 0,0 we have

The tangent plane is parallel to the xy-plane

at 16
31/3 , 4

31/3
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again the tangent plane is parallel to the xy-plane

Suggested Practice:

Section 13.3:

1 thru 97 odd numbered, 107 (must do)
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