
Lesson4 Part3:

These notes correspond to the sections 13.1 and 13.2 in your text book.

Our text book has done a great job on the functions of several variables.

Out of many different texts that I have used for Multivariable Calculus, I have liked this one the best.

It will be very important that we read the text book.

Please make sure to read the pages 884-890 in the text before reading the lesson.

Let us look at some examples of functions of two variables:

Example 1:

fx,y  4 − x2 − y2 where both x and y are real numbers.

Note that the values of 4 − x2 − y2 are available for all the values of x and y

therefore the domain of this function is the set of all the values of x,y in the
x-y plane.

The range of fx,y is the set of all values that z  fx,y can assume for the values of

x,y in the domain.

In this example, we have fx,y  4 − x2 − y2  4 − x2  y2
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Note that Minimum that x2  y2 can be is 0 therefore Maximum that fx,y can be is 4

x2  y2 can be large without bounds, therefore fx,y  4 − x2  y2 will assume all possible values of 4 or less.

i.e. the range of fx,y  4 − x2  y2 is −, 4

If we look at a graph of z  4 − x2 − y2, it is

Example 2:

Consider fx,y  9 − x2 − y2
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Just think along the lines of the previous example, and note that a graph of

z  9 − x2 − y2 is the upper half of the sphere x2  y2  z2  9

and the domain the the set x,y : x2  y2 ≤ 9

that is

the range is 0,3

a graph is
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Note that for a function
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z  fx,y, fx,y  c (constant) is a curve in the xy-plane which is called a level curve.

for a function of three variables x,y, z

w  fx,y, z , fx,y, z  c (constant) is a surface in the space, called a level surface.

Example 3:

Let us look at #52 on the page 893

To describe the level curves of fx,y  x2  2y2 , for c  0,2,4,6,8

x2  2y2  0 is just a point at the origin

x2  2y2  2 is the ellipse x2

2  y2  1 BLACK

x2  2y2  4 is the ellipse x2

4  y2

2  1 RED

x2  2y2  6 is the ellipse x2

6  y2

3  1 BLUE

x2  2y2  8 is the ellipse x2

8  y2

4  1 GREEN
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Example 4:

Let us look at #54 on the page 493
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To describe the level curves of fx,y  exy/2 , for c  2,3,4, 1
2 , 1

3 , 1
4

First, note that for any c  0
The level curve is given by
exy/2 c

which gives us

lnexy/2 lnc
→
xy
2  lnc
→
y  2 lnc

x

The level curve is going to be a rectangular hyperbola

c  2 (black)
c  3 (blue)
c  4 (red)
c  1

2 (green)
c  1

3 (purple)
c  1

4 (gray)
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Note that the quadrants of the hyperbolae changed for 0  c  1 because
the natural log of such numbers is negative.

A graph of the surface

z  exy/2
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if we zoom in close to the origin
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Example 5:

Let us work on #72 page 894
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To sketch a level surface of

fx,y, z  x2  1
4 y2 − z, for c  1

Note that

x2 1
4 y2−z  1

→
z  x2 1

4 y2−1

This is a paraboloid with its vertex at 0,0,−1 as shown below
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Example 6:

#74 page 894
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To draw the level surface of fx,y, z  sinx − z with c  0

Remember that graph of sinx − z  0 that is z  sinx is a cylinder generated by the sine curve in the xz-plane with
the rulings parallel to the y-axis
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......................

This part of the lesson corresponds with the section 13.2 in the text book
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We must read the pages 896-902 of the text

Let us work on the evaluation of Limits:

Example 1:

#16 on the page 902

To evaluate Limx,y→1,1
xy

x2y2

Note that xy → 1 and x2  y2 → 12  12  2

apply the algebra of limits to conclude that Limx,y→1,1
xy

x2y2  1
2

The domain of this function is the set of all points x,y such that x,y ≠ 0,0

and the function is continuous on its entire domain.

Example 2:

#22 on the page 903

To evaluate

Limx,y→0,0
x

x2−y2
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Note that the function fx,y  x
x2−y2 is not defined at the points x,y that lie on the line y  x

or y  −x

Look at the definition of the Limit on the page 297,

in order for the function fx,y to have a limit at 0,0 , it must be defined in an open disk containing 0,0 except
possibly at 0,0

But in this case, no matter which open disk we take, the function is not defined at any point that lie on the
indicated lines
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Therefore the function does not have a limit at 0,0

Example 3:
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#24 on the page 903

To find Limx,y,z→0,0,0
xyyz2xz2

x2y2z2

In this case the function fx,y, z  xyyz2xz2

x2y2z2

is defined in any open sphere containing 0,0,0 except at 0,0,0

If we look at a table of values, see the Excel worksheet, it does not suggest the existence of a limit. I am
posting another file with an embedded video of a descriptio of this spreadsheet.

To verify this statement, recall that in order for fx,y, z to have a limit L,

the function should approach the value L regardless of the path the we adopt to approach 0,0,0

If we approach 0,0,0 along the x-axis, then y  z  0 along this path

the function fx,y, z approaches x0002002

x20202  0
x2  0

If we approach 0,0,0 along the line x  y  z, then along this path

the function fx,y, z approaches xxyx2xx2

x2x2x2  x22x3

3x2  x212x
3x2  1

3

Since we get different values via different paths, the limit does not exist.
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Example 4:

#44 on the page 905

To evaluate Limx,y→0,0
x2y2

x2y2

by using the polar coordinates as detailed in the text

x  rcos y  r sin

Limx,y→0,0
x2y2

x2y2

Limx,y→0,0
rcos2r sin2

rcos2r sin2

Limx,y→0,0
r4 cos2 sin2

r2 cos2sin2

Limx,y→0,0
r4 cos2 sin2

r2

Limx,y→0,0r2 cos2 sin2

since r → 0 as x,y → 0,0

and 0 ≤ cos2 sin2 ≤ 1

Limx,y→0,0r2 cos2 sin2  0

Limx,y→0,0
x2y2

x2y2  0
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Example 5:

#46 in the text
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To find Limx,y→0,0
sin x2y2 

x2y2

substituting x  rcos and y  r sin

we have

Limx,y→0,0
sin x2y2 

x2y2

Limx,y→0,0
sin r2

r2

Limx,y→0,0
sin r

r if we have r  0
Limr→0

sin r
r

1
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Example 7:

24



To discuss Limx,y→0,0
x2y

x4y2

a)

Along the line y  ax

Limx,y→0,0
x2y

x4y2

Limx,y→0,0
x2ax

x4ax2

Limx,y→0,0
ax3

x4a2x2

Limx,y→0,0
ax3

x2x2a2 

Limx,y→0,0
ax

x2a2 

0

b)

along y  x2

Limx,y→0,0
x2y

x4y2

Limx,y→0,0
x2x2

x4x2 2

Limx,y→0,0
x4

x4x4

Limx,y→0,0
x4

2x4

Limx,y→0,0
1
2

c)
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differrent paths yield different limits, therefore Limx,y→0,0
x2y

x4y2 does not exist

Look at diiferent views of some graphs of this function
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The graphs in this lesson were created by Scientific Work Place.

We discussed the procedure for this package earliar in week 2.
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Suggested Practice:

Section 13.1: 7,11,13,19,23,27,35,47,49,51,55,67,69,71,77,83,87

Section 13.2: 1 thru 71 (odd numbered)
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