
Section 12.1
Please read the pages 832-836

Example: r t  3cos ti − 2sin tj  tk  〈3cos t,−2sin t, t

is a vetor valued function.

Let us compute a few values of this function

t  0, 〈3cos0,−2sin0,0  〈3,0,0
t  

6 , 3cos 
6 ,−2sin 

6 , 
6  3 3

2 ,−1, 
6

t  
4 , 3cos 

4 ,−2sin 
4 , 

4  3
2

,− 2 , 
4

t  
3 , 3cos 

3 ,−2sin 
3 , 

3  3
2 ,− 3 , 

3

t  
2 , 3cos 

2 ,−2sin 
2 , 

3  0,−2, 
2

Look at a plot of these points
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A sketch will look like
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If we compute several values for 0 ≤ t ≤ 2 and connect them by smooth curve, we shall see
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If we compute several values for 0 ≤ t ≤ 4 and connect them by smooth curve, we shall see
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If we write the values in terms of the coordinates

x  3cos t y  −2 sin t z  t

Note that

x2  9cos2t and y2  4sin2t

implies

x2

9  cos2t and y2

4  sin2t

x2

9  y2

4  1

This means that the graph of the curve lies on

the cylinder
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As values of t change, the points spiral around this cylinder and the resulting curve is called a helix.

Example 2:

To disuss a graph of x  t2, y  t, z  3t

The curve lies on the cylinder x  y2
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A graph of the curve looks like

12



Let us look at the excercise #38 on the page 840 of the text book:
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r t〈cos t  t sin t, sin t − tcos t, t

x cos t  t sin t → x2cos2t  t2 sin2t  2t sin tcos t
y  sin t − tcos t → y2 sin2t  t2 cos2t − 2t sin tcos t

x2y2cos2t  sin2t  t2 sin2t  t2 cos2t

x2y2 1  t2

use z  t

x2y2 1  z2

x2y2−z2 1

The curves lies on the hyperboloid

14



15



t cos t  t sin t sin t − tcos t t
0 1 0 0
1 cos1  sin1  1. 38 sin1 −cos1  0.3 1
2 cos2  2 sin2  1. 4 sin2 − 2cos2  1. 74 2
3 cos3  3 sin3  − 0.57 sin3 − 3cos3  3. 1 3
4 cos4  4 sin4  − 3. 68 sin4 − 4cos4  1. 86 4
5 cos5  5 sin5  − 4. 51 sin5 − 5cos5  − 2. 38 5

Based on these points, we have a graph
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A graph involving more points will look like
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Now, let us turn our attetion to examples involving curves that are obtained by taking intersection of two
surfaces.
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#64 on the page 838

To write a parametric equation of the space curve that is given by the intersection of

x2  y2  z2  10 a sphere
and
x  y  4 a plane

We can easily visulalize that if the above two intersect, they intersect along a circle.
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We have to write a vector valued function with the parameter given by x  2  sin t
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Note that we have x  y  4 means 2  sin t  y  4 → y  2 − sin t

To obtain y, we can substitute these values in the equation of the sphere x2  y2  z2  10

2  sin t22 − sin t2z2 10
→
4  4 sin t  sin2t  4 − 4 sin t  sin2t  z2 10
→
8  2 sin2t  z2 10
→
z2 10 − 8 − 2 sin2t
→
z2 2 − 2 sin2t
→
z2 2 1 − sin2t
→
z2 2cos2t
→
z  2 cos t

r t2  sin ti 2 − sin tj  2 cos tk

We may write values of the vector function for some values of t
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#66 on the page 838

To find the intersection of x2  y2  z2  16 and xy  4

the intersection of a sphere and the cylinder given by the hyperbola xy  4
as a generating curve.
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We are confined in the first octant
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To write a vector equation with x  t

when x  t
xy  4 → y  4

t

To find a function for z use

x2y2z2 16

t2 16
t2 z2 16

z  16 − t2 − 16
t2
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Therefore a vector function is

r t ti  4
t j  16 − t2 − 16

t2 k
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Remember that the limit and continuity of

r t  fti  gtj  htk

at a point depends on the limits and continuity of f,g,h
at that point.
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Likewise, look at the theorems 12.1 and 12.2 on pages 841 and 842 to connect the derivative of r t with the
derivatives of f,g,h and its properties.

Examples:

#6 on the page 846

first, we would like to sketch the parametric curve

r t eti  e2tj

the curve lies on the parabola y  x2

Since et  0 , we have the graph only in the first quadrant
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To find an sketch r 0  e0i  e20j  i  j  〈1,1

r ′
t eti  2e2tj

r ′
0 i  2j 〈1,2

29



r ′
0 is tangent to the curve at 1,1, the point that corresponds to t  0

#16 on the page 846

To find r ′
t if r t  〈sin t − tcos t, cos t  t sin t, t2 

Dtsin t − tcos tcos t −cos t  t sin t  t sin t

Dtcos t  t sin t − sin t  sin t  tcos t  tcos t

Dtt2 2t
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r ′
t  〈t sin t, tcos t, 2t

#26 on the page 846

To find r ′
t , r ′′

t and r ′
t  r ′′

t

r t〈e−t, t2, tan t
r ′
t〈−e−t, 2t, sec2t

r ′′
t〈e−t, 2, 2 sec t sec t tan t〈e−t, 2, 2 sec2t tan t

r ′
t r ′′

t〈−e−t, 2t, sec2t〈e−t, 2, 2 sec2t tan t −e−2t4t  2 sec4t tan t

Recall that

r tfti  gtj  htk is smooth on an open interval I, if f ′t, g′t, h′t are all continuous on I and r ′
t ≠ 0 for

any value of t in I.

#38 on the page 846

To find the open intervals on which r t  t i  t2 − 1j  1
4 tk is smooth

r ′
t 1

2 t
i  2tj  1

4 k

Function given by 1
2 t

is continuous on 0,

Function given by 2t is continuous on −,
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Function given by 1
4 is continuous on −,

Note that r ′
t ≠ 0 on 0,

Therefore r is smooth on 0,

#54 on the page 847

eti  sin tj  cos tkdt

  etdt i   sin tdt j   cos tdt k

eti − cos tj  sin tk  C
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