Assignment 6

1. Find the area of the surface $z = x^2 + y^2$ that lies below the plane z = 9 (Hint: transformation to plolars will make the computation easiar)

2. Find $\iint_{S} x^2 e^{y} dV$, where *S* is bounded by $z = 1 - y^2$, and the planes z = 0, x = 1, and x = -1The region S is

3. Use the cylindrical coordinates to find the volume of the region that lies inside both of the sphere $x^2 + y^2 + z^2 = 4$ and the cylinder $x^2 + y^2 = 1$

4. Use the spherical coordinates to evaluate $\iiint_{S} (x^2 + y^2 + z^2) dV$

where *S* is the region inside the unit ball $x^2 + y^2 + z^2 \le 1$

5. Use the change of variables $x = \frac{1}{2}(u+v)$ and $y = -\frac{1}{2}(u-v)$

To evaluate

$$\iint_{R} 60xydA$$

where R is the region shown below

