If f is a function on [0, »), the function £(f)defined by the integral
2] = | " est(t) dt
0

for those values of s for which the integral converges is the Laplace transform of f. The
Laplace transform depends on the function f and the number s.

In our course, Laplace Transforms will be used to solve differential equations of the

form,

2
L PO +Qy - o)

when f(t) is a piece wise continuous function.

Remember, a piecewise continuous function looks like

OR



even

/
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Before applying the Laplace Transforms to the solutions of differential equations, let
us first compute the Laplace Tansforms of some basic function.

Let o be a constant



o0

Ela] = J'ae*Stdt = a(— e:t
0

/‘°°>
0

Note that
—st |/ . —sb -s(0
S| e (50) - (4)
e—st /voo _ . e—sb 1
e—St « . . e—Sb 1
-3 = leb%o(— S ) +5

£la] = Iae‘Stdt = a(— e:t
0

in particular

/‘w
_a
. )—s , >0

you may check by induction that

E[t"] = SD_ll for a positive integer n

o0

£[e™t] = Ie‘Steatdt _ Ie(a—s)tdt _ %
0 5 .

Note that
/'DO
e(a—s)t _ 1 .
_((Z——S) . =~ a-=5 if s>a
at]p — 1
£[e] _




A sufficient condition for existence of Laplace Transform of a Piecewise continuous f
function on [0,) is

If we can obtain numbersc,M > 0and T > 0 such that
[f(t)] < Me®, fort>T

then £[f(t)] = f;o eStf(t)dt exists for s > ¢

Note that the Laplace transforms are linear.

Under the applicable conditions:

A Laplace Transform will transform a differential equation into an algebraic equation,
which is relatively easy to solve.

We saw above examples of Laplace Transforms of functions,
let us see how does a Laplace Transform of a derivative work.

If the laplace transform £[y] of a function y of t exists,
then E[—y} Ie—St dy dt
d

recall the method of the integration by parts
fudv = uv - [vdu
and note that

if we took
_ dy
— st
u=-esdv= ot dt
du = —sestdt v=y



J.e*St a4 _ —e~ty + [yse~stdt
j est=L dy dt = —ety|s” + j: yseStdt

ly| < Me®

s>0

—ely|g"" = —Limp...(ye™) +y(0)e™® = 0+y(0) = y(0)
j:yse*“dt = sj:ye*tdt = sE[y]

therefore

[d—y} je—St B 4t = _y(0) + sE[y]

or

il

Since, a Laplace transform will transform an a differential equation into an albegaric
eqguation, we should have an inverse transform to get back to the original question.

o
=1

| =)+ sty

£[f]=F = £E1(F) =f
recalling the results that we have already obtained

£[1] =+ gives £1[L1]=1



£t"] = Sﬂl gives £—1[£%} — t" for a positive integer n

£[ed] = s—la gives £*1[—S_1a } = g™t

Note that the inverse Laplace Transform is also linear.

Example of the computation of the inverse transform (Laplace in the case of this
lesson)

To find

- 25 +4 _r- 25 +4
£ 1[ (s—2)(s? +4s+3) J = l[ (s—2)(s+1)(s+3) }

We know from the results shown above that

£—1—SEZ—:e2t Putoz:ZinE—l—S_lot_=e“'t

£—1—Si1—:e—t Putoc:2in£—1—s_10£_ze')‘t

gif 1] = e Puta = 3in £t <L | = et
LS+ 3 L S—a |

We can use these values if we can express

25+ 4
(s—2)(s+1)(s+3)

as a sum of fractions in the manners hown below by using the

methods of Partial Fractions

25+ 4
(s—2)(s+1)(s+3)
A B C
“5-2Vt5s+1"5+3
CAG+1)(+3)+B(s-2)(s+3)+C(s—2)(s+1)
B (s—2)(s+1)(s+3)




_A(s?+45+3) +B(s?+s-6) +C(s*—s—2)

B (s—2)(s+1)(s+3)

~ As? + 4As + 3A +Bs? + Bs— 6B + Cs2 —Cs — 2C
B (s—2)(s+1)(s+3)
_(A+B+C)s?+ (4A+B-C)s+ (3A—6B—2C)
- (s=2)(s+1)(s+3)

compare the two sides of

25 + 4 _ (A+B+C)s2+(4A+B-C)s+ (3A—6B - 2C)
-2)(s+1)(5+3) (s—2)(5+1)(5+3)

and note that

A+B+C=0 ......... (1)
4A+B-C=2.... (2)
3A-6B-2C=4...... (3)

Let us recall several methods from Algebrall to solve the above system

Add equation (1) to equation (2) to get5A+2B =2 ... (4)
Add 2 times equ (1) toequ (3)toget 5A-4B =4 ... (5)

subtract equation (5) from the equation (4)

__o.,p=_1
6B=-2-B 3

equation (4) with the substitution of the above value gives

5A + 2(—%) =2

_2 _
S5A 3 2

_24+ 2
5A—2+3



equation (1) with substitution of

_ 8 p__1
A_15’B 3
gives
A+B+C=0
8 1 -
185 35+C 0
1—35—E+C:0
1—5+C]:-=O
C=-%
therefore
2s+4 8 1 1

5-2)s+1)(s+3) 15(s-2) 3(+1) 5(5+3)

5_1[ (5—2)(255:14)(s+3) J - 1&5’5_1[3—%} - %’Sl[ﬁ} B %H[ 513 }

-1 2s+4 _ 8 1.t 1.3t
£ |:(s—2)(s+l)(s+3):|_ 15 " 3¢ ~5°€

you may use method of elimination to solve these or if you are using a calculator like

T183

You may write the

system of equations
A+B+C=0
4A+B-C =2
3A-6B-2C =14

in the matrix form



11
4 1
3 -6

100
01
001

by using

the MATRIX option

Edit the matrix A to suit enter our matrix in the following way

1 0
-1 2
2 4

8

15
1

3
1

5

ta obtain the row?educed echelon form




[MATRIX A1 3 =4%

ATRIIA] @ =4 |
i i i
; i 5

M
[
[
[ "6 &

MAKE SURE TO QUIT
go the matrix option, select MATH, and chose rref (row reduced echelon form)

[LAMES WoaE EDITR B
2tiatre l1sto
E Listematrr

EGUNSUN{

10



a Microsoft Sy ke,

Go back to matrix and press enter when you have our matrix A

Eﬂ% MATH EDITE |
: 3

& Wirkual TI-83+ 3 Microsoft Outlook W

you should see

et C [A] 2R

3 Microsaft Outlook We. ..

press ENTER
to obatin

11



a Micrasaft

If you would like the answers in the fraction form:

press MATH then Frac to obtain

- Wirtual TI-83+ A Microsoft Outlook We...

ENTER

- Wirtual TI-834+ 2} Microsoft Outlook We. .

12



Let us look at the following example of using a Laplace Transform to solve an initial

value problem.

(#24 on the page 572 of the text book)

%+4y:2+3t, y(0) = 0

Even though the differential equation can be solved without Laplace Transforms, let us
use it to learn the procedure.

dy _
E+4y—2+3t

Because the Linearity of the Laplace Transforms

E[ d—>t’ } T 4£[y] = 2£[1] + 3£[t]

Use £[1] = 4, £[t"] = I and E[d—ﬂ — _y(0) + SE[y]

~y(0) + sE[y] + 4£[y] = % N S%

Given thaty(0) =1

“LasEly]+4Ely] = £+ 2

13



2 3 1
Evl= s(s+4) " s2(s+4) T 5i4
_ S2+2s+3
BV ="ge+ 0

therefore

_ 1| S2+25+3
y=£ |: s?(s+4) J

Use the method of Partial Fractions
s2+25+3 _ A, B _C
s2(s+4) S s2 s+4

s2+25+3 _ As(s+4)+B(s+4)+Cs?

s%(s +4) s2(s +4)
$2+25+3 _ As?+4As+Bs + 4B + Cs?
s2(s+4) s2(s+4)
s2+25+3 _ (A+C)s>+(4A+B)s+4B
s?(s+4) s?(s+4)
A+C=1

AA+B =2

4B:3AB=%

-2, B3 _ 92, uA=2_3 LAA=-5 L A= 2
4A+B =2 4A+4 2 - 4A 25 4114A 7 A 16
A+C:1—>C:1—A—>C=1—l—6:1—6
s?2+2s+3 _ 5 3 11

S2(s+4) 165 ' 4s? ' 16(s +4)

_ 1| S2+25+3 | _ 5 cafd 3l 1 A1 02 1
y==% |:sz(s+4) } T3 R s [32J+16£ [s+7]

_ 5 . 3:, 11 &
=16 T 3tt 168

14



Please finsih the practice problems for the section 6.1

15



Laplace Transforms of Discontinuous Functions:

Let us consider the function

For example,

0 if t<3
us(t)= .

1 if t>3

a graph is shown below

1+

This function is called the Heaviside function and are used in many
applications such as electrical systems.

Fora>20



let us compute £[ua(t)]=J. Ua(t)e-Stdt

recall that

0 if t<a
Ua(t) = ]
1 if t>a

Since ais a crucial point in the definition, let us split
£(ua(t)) |n the foIIowmg manner

[Ua(D)] j Ua(t)e-Stdt = j Ua(t)eStdt + j Ua(t)eStdt
£[Ua(t)]= j (0)e-Stdt + f(l)e—stdt
0 a

E[ua(t)] Ie-stdt e

a
a

that is

Elua(t)] =

Compare the functions shown below



__________




Let the black graph shown above be a graph of f and the red graph be a
graph of g

Notice that for t > a, the graph of g is the graph of f shifted to the right by a
that is to say that for t > a, git) =f(t—a)

OR
0 if t<a
g(t) = .
f(t—a) If t>a

OR we may write

g()= ua()f(t—a)
such a transformation means that we turn the function on whent = a

The Laplace Transforms of g and f are related in the following manner

P P 0 ift<a
£[g] = t)e=stdt = | f(t — a)eSdt because g(t) =
[0] !g() [ia-a) 0 {f(ta) e

a

To evaluate

jf(t —a)estdt

a

taket—a =u - dt =du
and alsot=u+a



If(t —a)eStdt

a

:J' f(u)eswady
0

=[ f(wye ey
0

=g~Sa I f(u)eUdu
0

=eS8F(s) where £[f] = F(s)

That is

£lua(D)f(t—a)] = e@F(s), where £[f] = F(s)
OR

£-1[e~aF(s)] = ua(t)f(t—a) , where £71[F(s)] = f(t)
Before we apply this technique for the solutions of differential equations,

let us work with couple of plain examples.

Example 1:

Remember that £[t"] = 2, where nis a whole number

g+l ’

Therefore £[ux(t)(t—2)%] = e £[t3] = e*S(%) = Ge>

g4

OR

£ 22 ]= ua(t)(t - 2)°

g4



Example 2:

To find £- 1[ S‘;‘:;) } (#6 on the page 580 of the text)

_ 1
First, note that S(s+3) = 3= 3(S+3) (used the methods of Partial Fractions)

and that £71[1] =
n

because £[t"] = where nis awhole number, therefore

n+1 4

£[1]= £[t°]=-L

s0+1

SCRCI

w|ha

and also that £71[ L. ] = e™® BECAUSE £[e*] = <

S+3

Therefore

-1 _4e®
£ |: S(s+3) :|
N
= £ |: 8(s+3) :|

— £-1 ge-2( L _ =21 __1
=£ [4e (35 3(S+3) } Recall from the above that s(%) = % ~ 353

s ] se i
=5 uz(t) — %uz(t)e 3(+2) pecause
£1[e~2F(s)] = ua(t)f(t—a) , where £71[F(s)] = f(t)

=2 Uz (t)[1 - e3t2)]

Applications to the solutions of initial value problems:
#12 on the page 580

& = —y+2u3(t) with y(0) =3



We may rewrite the equation:

Yty = 2uy(t)
apply the Laplace Transform:
£[ L J+£lyl= 2£[us(t))]

recall that

5[%} = —y(0) + s£[y]| and that [E[ua(t)] =

£[ L J+£lyl= 2£[ua(t))

-

—y(0)+sE[y)+E[y]= 2( &)

since it is given that y(0) = 3
We have

~4 + sE[y]+Elyl= 2( &)

= 2( 5 )+4

(s+1DE[y]= 2( &~ )+4

-3s
EYl=Zertar

S(s+1)

Use the method of partial fractions to obtain

1 _1
s(s+1) S

1
1



dy
dt

therefore we have

_ 2% 4
Elyl= s(s+1) Tt

-

Elyl- 267 (4 - )+

S+1 s+1
N
fly]=2e= 22 4
S s+1 s+1

-2 (52 )28 (55 )4 ()

recalling that

[e™aF(s)] = ua()f(t—a) , where £71[F(s)] = f(t)
+]=1and £t ] =e

= 2U,(t)—-2us(t)e 3 +4e™

£_
£7
y

It is important to note that the solution is valid for the values t + 3 because

does not existatt=3

#14 on the page 581

To solve the initial value problem
d _

& = -2y +uz(tet, y(0) =3

may rewrite the equation as

d -
T+2y = uy(t)e

apply the Laplace Transform:



E[ L +2£y]= E[ua(t)e ]
—y(0) + sE[y] + 2£[y] = E[u2(t)e] vrrnnnnee (1)

Instead of calculating £[u2(t)e!] directly, let us note that we know
Elua(t)f(t—a)] = e2F(s), where £[f] = F(s)
Since, £[e'] = L

s+1

Therefore, we know that £[u,(t)e 2] = e (L)

We may write, ux(t)e™ = uy(t)e'e?e? = uy(t)e ®?e? = e2u,y(t)e~ 2
E[uz(t)et]= £[e2ux(t)e D ]= e2E[ux(t)e 2 ]= e2e (L)

The equation (1) becomes

~y(0)+sE[yl+2£[y]= e 2e 2 (L)
—3+(s+2)E[y] = e—2e—23( L) given that y(0) = 3

(s+2)E[y] =e2e (L) +3

I} g% 3
£[y]_ € |: (s+1)(5+2) }" 5+2

Use the method of Partial Fractions to obtain
1 11

(s+1)(s+2) ~ s+l s+2

_2 728 _ *25
E’[y |: s+1 S+2 2

-5 e 5 e
or
y = e 2Uy(t)e"®2) —e2u,(t)e2+2) 4 372, t+2

S+2




Laplace Transforms of sine and cosine functions

Recall from the Integration by Parts that

at o _ 1 at _ H at
je sinotdt = 7 (w(cosmt)ed — a(sinwt)e?")
Therefore,
[etsinotdt = — L (o(coswt)e™ + s(sinwt)e™)

J.e*Stsin otdt
0

b
0
=LiMpo (—ﬁ(w(cosa)b)e*b + s(sinwb)e‘“’)) —~ (— L (w(cos0)e + s(sin O)e°)>

s2+@?

= LiMpoo| ——2 (o(coswt)e™ + s(sinwt)e ™) |

e >0 as b- o
-1 <coswb <1

therefore by squeeze theorem

ePcoswb > 0as b » «
also e sinwb - 0as b » «

s24+2

je—stsincotdt = (0+0) - (-1 (@+0))
0

or

j e Stsinotdt =—2—

s24+2
0

That is E[sinwt] = 5%

s2+0?




similarly E[cosot] = —*—

Let us derive and keep one more standard result that will come in quite
handy later

If £[f(t)] = je—Stf(t)dt = F(s)
0

£[ef(t)]

) edf(t)e-stdt
0
—[ extstct)dt
0

0

[ e-carsct)dt
0

sets—-a=u

£[ef(t)]= j e-WH(t)dt=F(u) = F(s — a)
0

£ledf(t)] = F(s —a)

#32 on the page 595

To solve the initial value problem

LY +3y = ua(t)cos(5(t—4)) , y(0) =0, y'(0) = -2

dt?



i

dy _
Where 4 =y

E[%}aqy]: £[Ua(t) cos(5(t — 4))]
E[ o } + 3€[y] = £[Us(t) coS(5(t = 4))] wervrnn (1)

Recall from the above that

e 2L ] - -y + sty

therefore
5[%} = —y'(0) +s£[y'] = —y'(0) + s(=y(0) + SE[y]) = —y'(0) — sy(0) + s?£[y]

£lua(D)f(t—a)] = e@F(s), where £[f] = F(s)

therefore,
£[us(t) cos(5(t—4))]= e 45—

s2425 52425

The equation (1) becomes

,s[ddit }+3£[y]: £[us(t) cos(5(t —4))]
—y’(0)—sy(0)+82£[y]+3£[y]=%

usey(0) =0 and y'(0) = -2

—(=2)-0 + SPE[y]+3E[y]|=2—

T 52425
N

2 + S2E[y]+3E[y]=S—

T s2425
N



S2E[y]+3£[y)=2—-2

T 52425
(s? + 3)E[y]=2 -2

_ se~4s 2
Elyl= (s2+25)(s2+3)  (s%+3)

_r-1 se~4 -1 2
y==£ |: (s2+25)(s2+3) :| £ |: (s2+3) :|
Use the methods of Partial Fractions to obtain

1 S 1 S

- s @
(s2+25)(s2+3) 22 §243 22 2425

vyt e et 5 e

£—1|: s :| - COSﬁt — £_1|:ﬂ:| = U4(t)COSJ§(t—4)

s2+3 5243

£ i J=cos5t - E7H[ S |- ug(t)cos5(t-4)

s2+25 52425
-1 2 _ 2 1| B2
£ [ (s%+3) J_ 3 £ [ (s+3) J_ 3 sin /3t

y = 5-Ua(t)cos V3 (t—4) — -us(t)cos5(t—4) — %Si”ﬁt , t#4

Example of a very interesting and useful thing,

which is called the Dirac Delta Function but interesting thing is that it is NOT
even a function.

This method was developed by the Nobel Prize winning Physicist Paul Dirac



(Photograph taken by another great mathematician Paul Halmos)
in 1930s for dealing with impulsive functions.

Let us look at the following function

® o i a-h<t<a+h
g =
" 0 if te(—o,a—h)U(+h,wo)



g

The area is always

(2h)(1/2h)=1

(1/2h)
- »
a-h a at+h
Therefore, regardless of the value of h, the area of the rectangle shown
aboveis 1 |To see the area change as h decreases, double click the hand tool in the box below
 The Geometer's Sketchpad - [Dirac.gsp] - I ImEIE
File Edit Display Construct Transform Measure Graph  work  Help ;Iilll
ll )
O
4 git)
B
2
44
The area is always
(2h)(1/2h)=1
-«
(112h)
&
a-h a ath
i start| | CihatuliFaliostsketchpad ISCIEHUFIC WarkPlace - [Ci... | ) LaplaceTransformsofDisc.,, | G The Geometer's Sketchp... | W Camtasia Studi - Untitls. . ‘G!%_;I =il %)@ 2sarm




Montgomery College
Text Box
To see the area change as h decreases, double click the hand tool in the box below


or in other words

[ gntdt =1

00

whenever h # 0

For areal number a, the Dirac Delta Function 64(t) = Limp.ogn(t)

where

® o i a-h<t<a+h
g =
" 0 if te(—oa—h)U(a+h o)

It looks awakward to say this but 64(t) is O everywhere, except at a where it is

But we can find £[5a(t)]

First of all let us find £[gn(t)]

E[gn(D)] = [ gn(t)etdt
0

a+h

_ 1 A-st
—j s-e it
a-h



a+h

=+ J. e~stdt

a—
( e—st a+h )
1 ( —s(a+h) ( s(a h) ))
2h
—s(a+h) —s(a—h)
= (- )
( —s(a+h) —s(a h) )

—sae—sh+e—saesh )

g™ e—sh+esh
o 28 ( h )

j

1
2h

N

N
|—\ :|H

£[6a(t)]

—Limhaof[gh(t)]

i (5

—ethen 2 form, we may use the L’Hospital

=& lehqo(m> (differentiated the numerator &denominator wrt h)
= —(2s)

_e—sa

Therefore [E[5a(t)] = %2

Example:
#4 on the page 602

To solve the initial value problem

429 w2y =250, y(0) =2, y'(0) =0

dt?

Take the Laplace Transform of this differential equation

E[d—y }+2£[ J+2£ly1= —2£[52(1)]



We had seen that
| =~y +stry)

e
El ot

L dt?

gl &

—

g[ &y ]

E[o2(D)] =

= [% } =y'(0)+s£[y']= =y'(0)+s(-y(0) + sE[y])= —y'(0)-sy(0)+s*£[y]

[+2£[ & J+2ely)= —2£[62(1)]

L dt? ]

~y'(0)-sy(0)+s*£[y]+2(-y(0) + SE[y])+2£[y)= —2¢7*

-

—0 — s(2)+S%£[y]+2(—(2) + SE[y])+2£[y]= —2e ™

-

~25 + SPE[Y]+2(—(2) + SE[y])+2£[y]= —2e7*

-

—25 + S2E[y]—4 + 2s£[y]+2£[y]= —2e 7%

—

(s2+2s+2)E[y]= 25+ 4 — 2%

—

25+4 g%

Elyl= (s2425+2)  (52+25+2)

or

_ -1 2s+4 _9p-1 e
y==£ |: (s2425+2) :| 28 |: (s2425+2) :|

Now we know that

- |=cosmt

T
2 J=sinot

therefore by using the techniques of completing the square, we may use



£[edf(t)] = F(s—a)
which means that

£F(s—a)] = e®f(t) where £[f(t)] = F(s)
o514 2s+2)  2s+2) 24142 s (st+1) 1
(s2425+2)  s242s+1+1  (s+1)2+1  (s+1)2+1 (s+1)%+1  (s+1)2+1

£ 55 |=cosat ~ £*l[ s+l }z etcost

s24e (s+1)2+12
-1 [0) _ i -1 1 _ aleq)
£ 525 |=sinot - £ [ e }— etsint
Also, from

£-1[e2F(s)] = ua(f(t—a) , where £71[F(s)] = f(t)

and

_ 1 o
£ 1[ T } = e tsint

we have
-1 = _p1|a-2__1 _ L(2) i
£ |: (52325+2) :| =L |:e ° :| = Uz(t)e sin(t—2)

(s+1)%+12

combining all of the above, we have

_ -1 2s+4 _op-1 g2
y==£ |: (s2+25+2) :| 2£ |: (s2+25+2) :|

y= 2£_1|: (sfrler)lz)Jrl :|+2£_1|: (s+11)2+1 :|_2£_1|:e_25 (S+1)12+12 :|
y

= 2e7tcost + 2e7tsint — 2uy(t)e Dsin(t-2), t=+2




Let us study another operator called convolution which is often used for solving
differential equations.

For functions f and g the convolution of f and g denoted by f x g is defined by

t

fxg(t) = jf(t —u)g(u)du
0

Example:
#2 on the page 610

To compute

Use the definition to get

t
_ J'e—a(t—u)e—budu

0
t

_[ e—a(t-u)-buy,
0
t
_[ e—at+au-buy,
0
t
_[ e—at+(a-b)uyy,
0

e—at+(a—b)u t

~ ab 1o




e —at+(a—b)t e —at+(a—b)0

a-b a-b
_e” e
a-b a-b

The discussion in the book on the pages 604-605 illustrates the proof of the following

£(f x g) = £[f]E€[g] = F(s)G(s) or £_1(F(S)G(S)) = f x g | aresult that is known as the

Convolution Theorem
Applications

Example 1:

Consider the initial value problem

d
4 +ay = ¥(0) =Yg

Take the Laplace Transform
dy
e | +aewm - i)

stEly] —y(0) + af[y] = F(s)
stE[y] —yg +akly] = F(s)
(s+a)kly] =yg+F(s)
_ _Yo F(s)
vl = (s+a) - (s+a)

Remeber that E[e_at] = %

therefore

where £[f(t)] = F(s)



Ele7axf(t) ] = £[e 8] £[f(D)]

F(s)

Ele A xf(t)] = cigF(S) = s1m

S+a

S+a

g1 [ Fe) ] — el f(t)

For the solution

_ Yo F(s)
)= (s+a) - (s+a)

S kel e R

y = ype a+e al xf(1)

is the solution of the initial value problem d

Example 2:

+ay = f(t) y(0) =Yyp

Convolutions may be used to solve integrodifferential equations as shown below.

The current in a deries curcuit may be modeled by Integrodifferential equations.

Let us take a simple example of an integrodifferential equation

To solve
t

dy _ 4 sing_ _
ﬁ_l sint '([y(u)du , y(0)=0



First note that

t
[ywdu=1+y©
0

therefore

t
{ | y(u)du} = £[1 % y(t)] = £[LIEY] = L£[y]
0

Taking the Laplace Transform of the differential equation

t

t
SE[Y] - y(0) = + - ﬁ - Lgy] | table 6.1 (page 620 and {jy(u)du} = gy
0

s?+1
SElY] + $EI] = + - oig
s°+1 $°+1-s
( S )E[y]— s(s*+1)
— S s?4+1-s

Evl = (sz+1 ) s(s?+1)
£ry] = S41-s

[v] (5+1)’
Ely] = < S

S+l (1)’



=y )

y = sint — tsint TABLE 6.1, this table will be included in the final
exam





