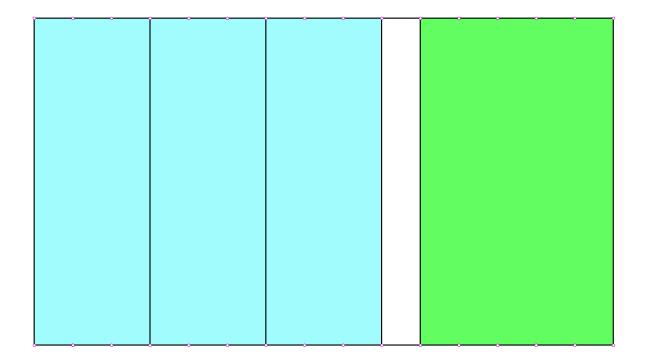

Fractions with illustrative examples

Relate the following with $\frac{3}{5}$

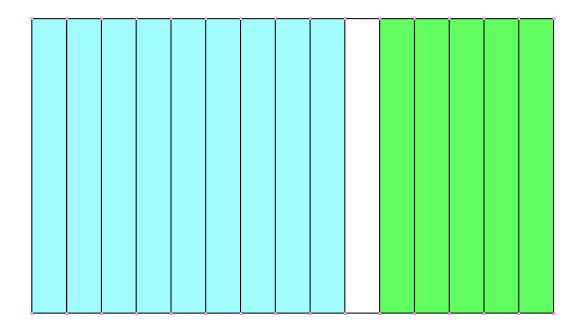
The colored portion is $\frac{3}{5}$,3 out of 5 equal portions of the whole.


The colored portion in the following is $\frac{1}{3}$ that is 1 out 3 equal portions of a whole

If we have to determine the value of $\frac{3}{5} + \frac{1}{3}$

that is

the blue and the green area together in the following picture:



We can so so by

first taking the lowest common multiple of the two denomintors that is 3 and 5:

The least common multiple of 3 and 5 is $3 \times 5 = 15$

Then divide the rectangle into 15 equal segments

Note that the two regions together are $\frac{14}{15}$

We could it arithmetically by using the following process

note that 15 is a common

$$\frac{\frac{3}{5} + \frac{1}{3}}{\text{denominator}} \\ = \frac{3 \times 3}{5 \times 3} + \frac{1 \times 5}{3 \times 5} \\ = \frac{9}{15} + \frac{5}{15} \\ = \frac{14}{15}$$

$$=\frac{9}{15} + \frac{3}{15}$$

 $=\frac{14}{15}$

Example 2:

Adding rational numbers

To add

 $\frac{1}{12} + \frac{3}{8}$: Note that $12 \times 8 = 96$ is a common denominator and will still give us the correct answer,

but a good idea is to find the lowest common denominator

One way to find a common ddenominator is to look at prime factorizations of the denominators,

here:

$$8 = 2 \times 2 \times 2$$

 $12 = 2 \times 2 \times 3$

This suggests that THREE factors of TWOs and one factor of THREE are enough to cover both 8 and 12

That is $2 \times 2 \times 2 \times 3 = 24$

and note that

$$24 = 3 \times 8$$

 $24 = 2 \times 12$

and we are relieved of the unnecessary excess baggage that we would have to carry by using 96.

NOW LET US ADD

 $\frac{1}{12} + \frac{3}{8}$ using 24 as the common denominator (which is the lowest common denominator)

$$= \frac{2}{24} + \frac{9}{24}$$
$$= \frac{11}{24}$$

Example 3:

Add

$$\frac{5}{18} + \frac{7}{15}$$

For the lowest common denominator, look at

$$18 = 2 \times 3 \times 3$$

 $15 = 3 \times 5$

To cover both of these, we need ONE factor of TWO, TWO factors of THREE, and ONE factor of FIVE

 $2 \times 3 \times 3 \times 5 = 90$ the lowest common multiple of the 8 and 15, or the lowest common denominator in this case

Note that

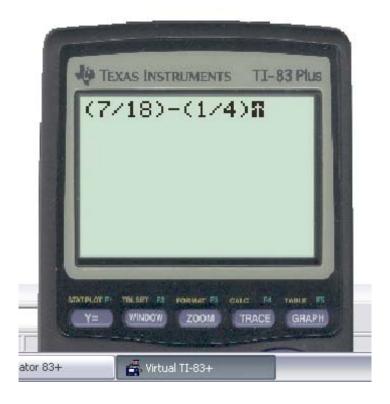
$$18 \times 5 = 90$$
 and $15 \times 6 = 90$

using these

we have

$$\frac{5}{18} + \frac{7}{15} \\
= \frac{25}{90} + \frac{42}{90} \\
= \frac{67}{90}$$

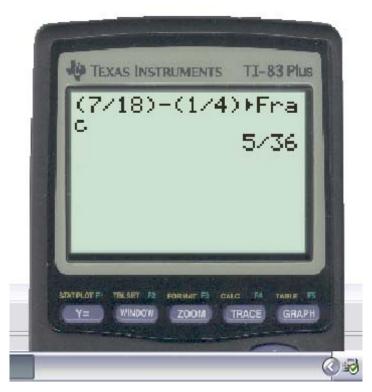
4. Subtraction:


 $\frac{7}{18} - \frac{1}{4}$ Note that the lcd here is 36 and 36 = 18 × 2 , also 36 = 4 × 9

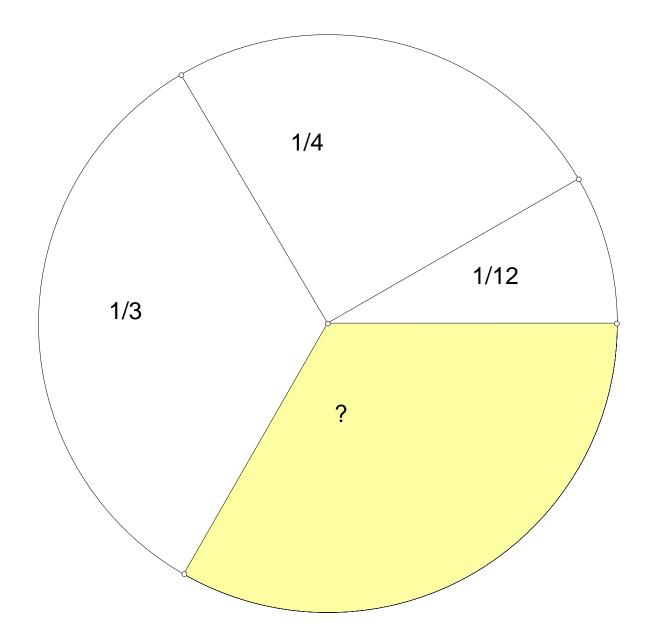
therefore we may write

$$\frac{7}{18} - \frac{1}{4} \\
= \frac{7 \times 2}{18 \times 2} - \frac{1 \times 9}{4 \times 9} \\
= \frac{14}{36} - \frac{9}{36} \\
= \frac{14 - 9}{36} \\
= \frac{5}{36}$$

If you are using a TI83plus calculator,


First enter the fractions

Then Press Math Key and SElect Frac



Press Enter to see the answer

Using Pictures:

Example 5:

To find the value of the colored portion:

Note that the non colored portion adds to $\frac{1}{3} + \frac{1}{4} + \frac{1}{12}$: 12 itself is the lowest common denominator

$$\frac{1}{3} + \frac{1}{4} + \frac{1}{12}$$

$$= \frac{4}{12} + \frac{3}{12} + \frac{1}{12}$$
$$= \frac{8}{12}$$

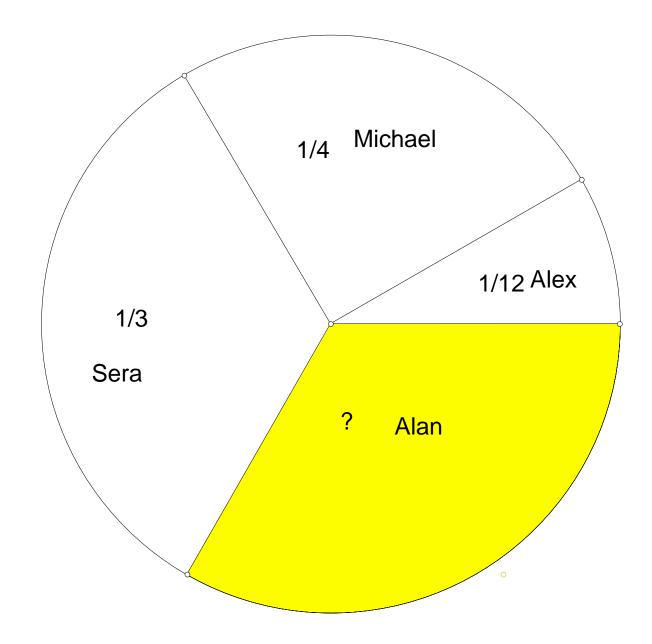
$$=\frac{2}{3}$$

The leftover from 1 is

$$1 - \frac{2}{3} = \frac{3}{3} - \frac{2}{3} = \frac{1}{3}$$

This may be thought of as a oractical problem like

 $\frac{1}{12}$ of a circular plot is given to Alex


 $\frac{1}{4}$ to Michael

 $\frac{1}{3}$ to Sera

The rest to Alan

How much is left for Alan?

Answer is $\frac{1}{3}$

Example 6:

Multiplication

$$\frac{\frac{8}{15} \times \frac{9}{16}}{\frac{8 \times 9}{15 \times 16}}$$

$$= \frac{\frac{8 \times 3 \times 3}{3 \times 5 \times 8 \times 2}}{\frac{3}{10}}$$

Example 7:

Division:

$$\frac{\frac{6}{35} \div \frac{3}{7}}{=\frac{6}{35} \times \frac{7}{3}}$$

$$=\frac{\frac{6}{35} \times \frac{7}{3}}{\frac{35 \times 3}{5 \times 7 \times 3}}$$
Change ÷ to × and reverse the denomiantor
$$=\frac{\frac{6 \times 7}{35 \times 3}}{\frac{2 \times 3 \times 7}{5 \times 7 \times 3}}$$

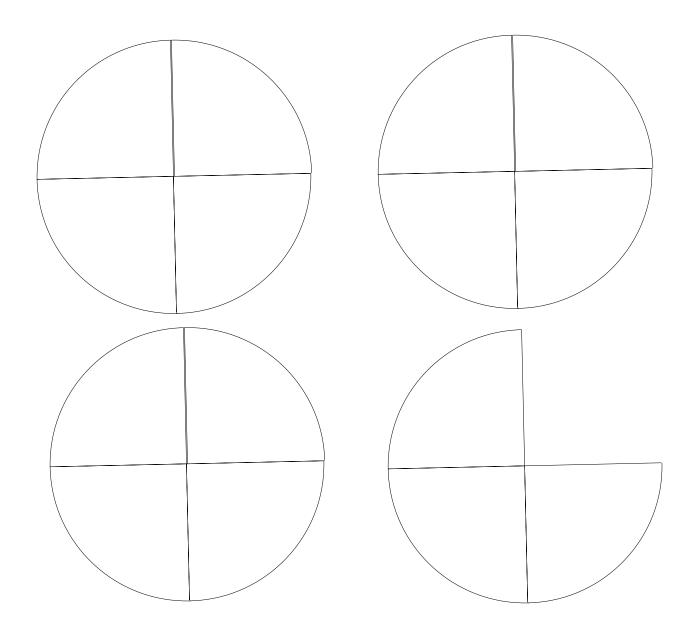
$$=\frac{2}{5}$$

MIXED FRACTIONS:

May be seen at many places

here of course, $239\frac{9}{10}$ is meant to express 2.399

But note other situations Like:



A restuarant is selling Pizza slices for \$1.79 each and four slices make a whole Pizza that is each slice is $\frac{1}{4}$ of a Pizza.

If you a whole Pizza, they charge \$5.99

In case you need 15 slices, a good idea will be

to get three whole Pizzas and 3 Slices

That is $3 + \frac{3}{4}$ which is generally written as a mixed fraction of the form $3\frac{3}{4}$

Note that we can express

$$3\frac{3}{4}$$
 back as
=3 + $\frac{3}{4}$
= $\frac{12}{4}$ + $\frac{3}{4}$

$$=\frac{15}{4}$$

.....

Arithmetic with mixed fractions:

Example 8:

To find

$$3\frac{1}{6} - 1\frac{11}{12}$$

Let us use two methods:

Method I:

Write
$$3\frac{1}{6} = \frac{3 \times 6 + 1}{6} = \frac{19}{6}$$

and
$$1\frac{11}{12} = \frac{1 \times 12 + 11}{12} = \frac{23}{12}$$

Therefore

$$3\frac{1}{6}-1\frac{11}{12}\\ = \frac{19}{6}-\frac{23}{12}\\ = \frac{19\times2}{6\times2}-\frac{23}{12}\\ = \frac{38}{12}-\frac{23}{12}\\ = \frac{15}{12}\\ = \frac{5}{4}\\ = 1\frac{1}{4}$$
 note that the lowest common denominator is 12

METHOD 2:

you may write

$$3\frac{1}{6} - 1\frac{11}{12}$$

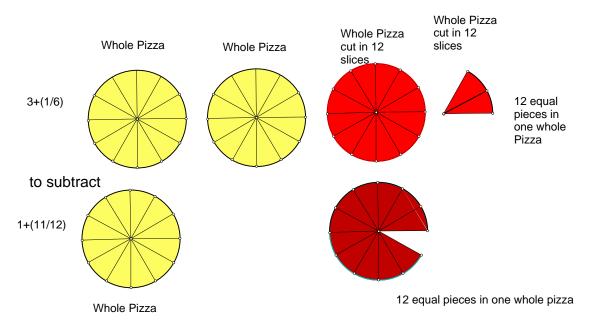
$$=3\frac{2}{12}-1\frac{11}{12}$$

Note that $\frac{11}{12}$ is more than $\frac{2}{12}$

therefore in $3\frac{2}{12}$, we have to transfer, 1 from 3 to make the fractional part larger to be able to subtract

That is, look at
$$3\frac{2}{12}$$
 as $3 + \frac{2}{12}$ and then as $2 + 1 + \frac{2}{12} = 2 + \frac{12}{12} + \frac{2}{12} = 2 + \frac{14}{12} = 2\frac{14}{12}$

Therefore

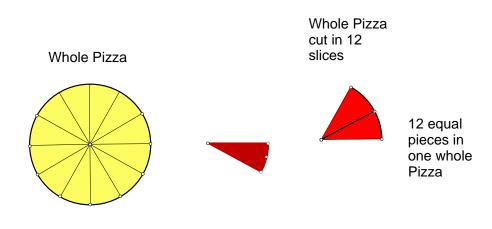

$$3\frac{2}{12} - 1\frac{11}{12}$$

$$= 2\frac{14}{12} - 1\frac{11}{12}$$

$$= 1\frac{3}{12}$$

$$= 1\frac{1}{4}$$

as illustrated by the following picture


Note that during the subtraction part

One whole Pizza on the top will be required to subtract thew
hole Pizza on the bottom

and

11 slices on the top will be required to cancel the 11 slices on the bottom.

WE shall be left with 1 whole Pizza and 3 slices

One whole and 3 slices left

Method 3:

Example 9:

A division problem

$$3\frac{4}{7} \div 2\frac{8}{21}$$

$$= \frac{25}{7} \div \frac{50}{21}$$

$$= \frac{25}{7} \cdot \frac{21}{50}$$

$$= \frac{25}{7} \cdot \frac{21}{50}$$
changed from division to multiplication by flipping the divisor

$$=\frac{3}{2}$$
$$=1\frac{1}{2}$$

Example 10:

A multiplation problem

$$5\frac{3}{5} \cdot 2\frac{1}{7} = \frac{28}{5} \cdot \frac{15}{7} = 4 \times 3 = 12$$